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Abstract

Is the transition to a green economy gender-neutral? The answer depends in part on how

new regulations would interact with existing gender imbalances in the market and the extent

to which workers are constrained in moving to green sectors. I develop and estimate a dynamic

structural general equilibrium model of the U.S. economy that conceptualizes mobility costs

for female and male workers who can change their sector in response to an energy tax. I

find that female workers face twice the mobility costs of males to change their sector while

leaving the market is equally costly for both and imposes higher costs. In after-tax scenarios,

differences in the long-run welfare losses across genders are driven by mobility costs. I also

study a particular case of a local labor market in which coal plays a substantial role, and

initial gender disparities are more pronounced. My empirical setting exploits variation in

coal-fired power plant closure announcements. I find that in anticipation of closure, female

workers in carbon-intensive sectors are disproportionately affected. Both findings contribute

to understanding the disparities women face in a green transition and reveal a mechanism for

disparate effects by differentiating and quantifying mobility costs.
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1 Introduction

Environmental regulations would likely alter the distribution of employment among industries

rather than the total employment level (Arrow et al., 1996). As technological changes favor

women (Black and Spitz-Oener, 2010), and the growth of the service sector contributes to nar-

rowing the gender wage gap (Olivetti and Petrongolo, 2016; Ngai and Petrongolo, 2017), growth

of green sectors which has different characteristics than male-dominated carbon-intensive sec-

tors could potentially yield similar outcomes. Nonetheless, the question of whether women

can effectively transition into these green jobs is unknown. As early evidence shows women

are not acquiring green jobs at the same rate as men (Gilbert et al., 2023), the reasons for

this disparity remain unclear. This paper studies the transition to a green economy, with a

particular focus on women’s economic opportunity and mobility.

Mobility constraints can play a significant role in creating barriers for workers transition-

ing into low-carbon sectors.1 From a gender perspective, an additional factor is the existing

gender segregation in the labor market. The share of the service sector in the local labor

market is associated with higher female market hours (Petrongolo and Ronchi, 2020; Rendall,

2018), and there is evidence of a positive correlation between the prominence of extractive

sectors and gender inequality (Baum and Benshaul-Tolonen, 2021). In a labor market charac-

terized by substantial carbon-intensive industries that are predominantly male, an otherwise

neutral environmental policy could yield different outcomes for male and female workers. I

examine the extent to which mobility constraints differ by gender and have an impact on

adaptation to transition, and the extent to which the preexisting gender imbalance influences

the distributional outcomes of environmental regulations.

To address mobility constraints, I construct a dynamic general equilibrium model of costly

intersectoral labor mobility to study gender differences in the presence of an energy tax. I

model switching costs following Artuç et al. (2010) (hereafter, ACM) and estimate structural

model of mobility costs using Euler-type equation techniques. In contrast to their paper,

I include female workers’ moving decisions to capture gender differences and introduce an

1 Constraints may include adapting human capital, incurring explicit search costs, and forfeiting sector-specific
productivity. This paper considers mobility costs as the aggregate value associated with switching sectors rather
than differentiating different components of mobility costs. As Vona et al. (2018) argues, acquiring green skills is
costly; while this is a factor that contributes to mobility costs, there are other factors that affect total costs.
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additional non-market sector to loosen the assumption of inelastic labor supply. I construct a

non-market sector to represent home production, with the costs of moving to the home sector

perceived as penalties for leaving the labor market.

In my model, mobility costs are characterized by monetary and non-monetary components.

Female workers must forego 2.2 times the average annual wages (normalized by the mean wage)

to change their sector, while the cost is 1.6 for male workers. However, leaving the labor market

incurs even higher costs, approximately four times the average annual wages, for both genders.

Non-monetary factors play a comparable and relatively small role in both male and female

market mobility decisions, indicating that expected wage differentials significantly influence

mobility choices. Non-monetary factors are more important in the decision to exit the market,

which indicates limited role of wages.2

Mobility estimates suggest substantial reallocation costs, varying by gender. To under-

stand the role of such costs in a context of environmental regulations, I simulate a general

equilibrium of a simplified U.S. economy with an energy tax and estimated mobility costs. I

find lower long-run present discounted values for women across all education levels relative to

men. I study a counterfactual scenario in which women face the same mobility costs as men.

Gender differences disappear in the long run, implying mobility costs act as a mechanism that

perpetuates long-term disparities.

To account for preexisting conditions, I study a particular local labor market experiencing a

regulation-induced transition over the past decade. Local markets with coal-fired power plants

have a higher proportion of carbon-related employment relative to the national average, and

gender imbalances are more pronounced.3 As a part of the initial phase of the green transition,

efforts are being made to reduce fossil fuel dependence in energy production and accelerate

the closure of coal-fired power plants which is anticipated to continue until 2040.

I study local labor market adjustments, exploiting variation in coal-fired power plant retire-

ment announcements. Retirement announcements provide a context for a gradual adjustment,

with planned retirement decisions are either documented in the Energy Information Adminis-

2 If moving to the home sector is driven by factors like family or location preferences, my model would capture
this pattern as a higher importance of non-monetary factors.

3 https://cnee.colostate.edu/wp-content/uploads/2021/08/Supporting-the-Nations-Coal-Workers-r

eport.pdf Coal-related employment in these communities is higher than the national average. In the next section,
I show female-male wage ratios in coal-fired power plant communities and the rest of the nation.
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tration (EIA) survey, or publicly announced.4 I link the EIA-860 power generator survey, which

provides detailed information about generator’s characteristics to the American Community

Survey (ACS) local labor market characteristics.

I find that in anticipation of a closure, female workers in carbon-intensive sectors are

affected. Low-educated female workers are less likely to work in carbon sectors, while high-

educated female workers are more likely to be unemployed. In contrast, low-educated male

workers experience a reduction in the number of hours worked, and high-educated male workers

are not affected by anticipation of closure in the labor market. Estimates for female workers are

greater in magnitude in places with higher capacity, suggesting women are disproportionately

affected in a labor market characterized by extensive carbon dependence.

This paper contributes to the literature in several ways. First, there has been a grow-

ing interest in potential employment effects and distributional consequences of environmental

regulations (Greenstone, 2002; Walker, 2011, 2013; Yamazaki, 2017; Yip, 2018; Curtis, 2018),

with some evidence that there exist gender-specific effects, but the extent of gender disparities

and the mechanisms driving them remain unclear.5 As resource booms have gender-specific

impacts and change the labor allocation by gender (Maurer and Potlogea, 2021; Aragón et

al., 2018; Kotsadam and Tolonen, 2016), little is known about the transition to a green econ-

omy. As the introduction of new policies increases the pace of an energy transition, this paper

identifies and adds the gender dimension to distributional effects discussions.

Second, this paper complements environmental regulations and employment effects studies

by differentiating and quantifying mobility costs as indicators of labor market frictions. While

existing empirical evidence provides displacement costs with heterogeneity by workers’ char-

acteristics, including gender (Walker, 2013), a general equilibrium framework is necessary to

fully understand the spillover effects and long-term implications (Hafstead and Williams III,

2018).6 Current general equilibrium models study mobility by incorporating static or search

4 The EIA-860 survey includes a question about planned retirements within the next five years, but reporting to
EIA is not legally binding. While the EIA has expanded the question to cover the next ten years, Davis et al. (2021)
shows the relevant timeframe is shorter.

5 Walker (2013) studies sectoral reallocation of labor under the Clean Air Act finding that workers in newly
regulated plants experience earning loss of 20% of their preregulatory earnings, with effects more pronounced for
female workers. Yip (2018) provides evidence that British Columbia’s carbon tax has differential impact on female
and male workers.

6 While Walker (2013) is closely related to this paper, there is a difference between displacement costs and
mobility costs. In Walker’s setting costs are associated with displacement which caused by CAA, while in my model
I estimate total mobility costs which captures both voluntary and involuntary movements. Robinson (2018) provides

4



frictions (Aubert and Chiroleu-Assouline, 2019; Hafstead and Williams III, 2020) or by exam-

ining two extreme scenarios of labor market mobility: perfectly mobile workers or perfectly

immobile workers (Castellanos and Heutel, 2019). I introduce imperfect mobility in a general

equilibrium setting, which complements existing models in the environmental regulation and

employment effects context.

Identifying mobility costs and their distributional consequences might be especially im-

portant in the green transition. With the anticipation of millions of jobs being created by

this transformation, the question of which workers will be able to access these opportunities

remains uncertain. I find that female workers tend to incur greater mobility costs, suggesting

potential delays in their access to green jobs. (Gilbert et al., 2023; Curtis et al., 2023) docu-

ment differences in acquiring green jobs and delays for different types of workers by age and

education, and Gilbert et al. (2023) also shows women falling behind acquiring green jobs. The

findings of this paper suggest an explanation for potential delays: substantial mobility costs,

particularly for female workers. In my model, mobility costs have long-term distributional

effects and represent one potential avenue for reducing gender disparities in the long run.

Differentiating and quantifying mobility costs for various worker demographics will improve

understanding of the underlying mechanisms behind observed patterns in green employment,

ultimately achieving the goal of an equitable transition in the long run. While substantial evi-

dence demonstrates that moving costs vary with age and education levels among male workers

(Artuç et al., 2010; Artuç and McLaren, 2015; Caliendo et al., 2019) in trade-policy setting,

understanding such costs for female workers is comparatively limited. Dix-Carneiro (2014)

and Ashournia (2018) show that female workers face higher mobility costs in the Brazilian

and Danish labor market, consistent with the findings of this paper.7 I provide estimates for

sectoral mobility costs for females in the U.S. economy and costs associated with leaving the

market. Given the potential importance of an outside option and its role in labor market de-

cisions for female workers, this paper can provide a benchmark for future studies to estimate

associated costs of unemployment and leaving the labor force.

Finally, this paper adds to our understanding of the dynamics within the local labor market

an extensive discussion how to interpret these two specific costs.
7 Dix-Carneiro (2014) finds mobility costs ranging from 1.4 to 2.7 times annual average wages but a high dispersion

of these costs across the population. My preferred estimate is 2.2 times for female workers and 1.6 times for male
workers, which is in the range of estimates of this paper.
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in the context of coal-fired power plant closures. Natural resource booms and busts (Allcott

and Keniston, 2018; Black et al., 2005; Feyrer et al., 2017) and coal mine closures (Watson et

al., 2023) affects labor marker responses, while there is also evidence of persistent local un-

employment effects in Australia after coal-fired power plant retirements (Burke et al., 2019).

This paper identifies adjustments in anticipation of the closure of power plants in the U.S.

over the past decade and highlights that adjustments start before actual closure. I find dispro-

portionate effects for females in carbon-intensive sectors, implying that new regulations may

exacerbate existing conditions. The Inflation Reduction Act is expected to accelerate coal-fired

power plant retirements in the next 30 years, coinciding with a decline in coal and coal-fired

power plant demand worldwide. There is a growing need to understand distributional effects

on communities experiencing this transition.

2 Background

Transitioning away from fossil fuels is expected to lower carbon-intensive employment while

workers can mitigate possible economic losses by transitioning into unregulated low-carbon

industries. The 2023 Job Creation and Local Economic Development report from the OECD

highlights a gender disparity in the transition to a green economy, noting that women are

notably underrepresented in green-task jobs across local labor markets.8 Whether women

would employed in green sectors, or existing conditions would persist is unclear.

Gender segregation across sectors is still pronounced, as carbon-intensive sectors (such as

mining, utilities, and construction) have the lowest share of women in employment, and the

service sector has the highest share.9 Segregation has implications since predominantly female

jobs pay less than predominantly male (Macpherson and Hirsch, 1995), and industry choices

are important in explaining the gender wage gap (Blinder, 1973; Oaxaca, 1973; Levanon et al.,

2009).10 Environmental regulations, which alter the labor market structure, would directly

impact the economic opportunities of female workers, although the gender aspect has been

relatively understudied.11

8 https://www.oecd.org/cfe/leed/PH-JCLED-2023-3.pdf
9 https://www.bls.gov/cps/aa2019/cpsaat14.htm

10 In particular, Blau and Kahn (2017) show industry and occupation choices play a bigger role than in the past
in explaining the gender gap.

11 It is important to note that a portion of the gap exists that cannot be explained, and it is out of the scope of
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The impact of environmental regulations is expected to be particularly significant for em-

ployees working in regulated sectors. Yip (2018) shows evidence that the adverse employment

consequences are more pronounced for women in the context of British Columbia’s carbon tax

implementation. Walker (2013) finds female workers face substantial earnings losses in the

event of displacement as a response to Clean Air Act.12 Research shows large oil discoveries

have positive effects on women’s employment when the crowding effect is absent (Maurer and

Potlogea, 2021), but Aragón et al. (2018) demonstrates that the closure of coal mines dispro-

portionately affects women in manufacturing and the service sector due to the crowding effect

caused by inflow of male workers in the local labor market. It is evident that an examination of

unregulated sectors is essential, as the crowding-out effect, a consequence of worker mobility,

plays a crucial role in understanding the distributional impacts.

While regulations can impose costs on workers, such as wage decreases, workers have the

potential to mitigate these costs by transitioning to unregulated sectors. However, changing

the sector incurs costs as workers are constrained to move to one sector. In response to

trade shocks, trade economists have developed models to estimate mobility costs for labor

adjustments. However, there has been relatively limited focus on the specific impact of these

costs on female workers. Artuç et al. (2010); Caliendo et al. (2019); Artuç and McLaren (2015)

estimate mobility costs for only male data, Dix-Carneiro (2014) female and less educated

workers face higher mobility costs in Brazilian labor market. Ashournia (2018) estimates the

cost of moving between 1.2 to 2.4, and higher for female workers in Danish economy. In this

paper, I provide such estimates for U.S economy and my findings are in range of findings of

Dix-Carneiro (2014) and Ashournia (2018).

As labor market transitions encompass moves to nonemployment, it becomes important

to understand the associated costs of transitioning to nonemployment. Mentioned mobility

studies often regard outside the workforce as residual sector which masks female comparative

this paper.
12 Walker’s study is a part of extensive literature on worker displacement and associated costs. Earlier studies

indicate that higher displacement costs for women (Jacobson et al., 1993; Crossley et al., 1994). Recent studies
suggest a mechanism for higher displacement costs for women. Illing et al. (2021) find that women lose 35% more
than men in displacement scenarios and identifies key drivers of the gender earnings gap, including unemployment
duration, wage losses, and part-time work. They also noted women’s tendency to accept part-time jobs or stay at
home, resulting in larger immediate earnings losses. Ivandić and Lassen (2023) find child care imposes a barrier for
women to labor market recovery. However, this paper provides an estimate for total mobility, which is a combination
of voluntarily job switches and displacement.
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advantage. However, the home sector might play a different role than a residual one, as one

gender may have a comparative advantage over the other. This paper model the home sector

to represent women’s comparative advantage and provide a benchmark for estimated costs of

penalty for leaving the labor market.

3 Theoretical Model

Both existing gender imbalance in the labor market and possible heterogeneity in mobility

costs play a role in determining distributional effects. I borrow tools from trade economics

to model costly interindustry labor mobility to improve environmental policy setting (Weber,

2020). I follow ACM on the structural cost parameter model while extending their model

for out-of-market option and gender dimensions. To understand how the energy dependency

of sectors affects labor allocation and existing imperfect gender substitution across sectors,

I develop a nested energy-specific production side. Following sections explain the model in

detail.

3.1 Setup and timing

Time is discrete, t = {0, 1, 2...., }, and at t = 0 workers see realization of their type. There are

four different types of workers who differ in skill and gender. High- and low-educated groups

consist of female and male workers. An individual is indexed by i ∈ I ≡ {fl,ml, fh,mh}.

There are four market sectors and one home sector, which are indexed by j, k ∈ J , where

workers inelastically supply their labor. Market sectors are aggregated as Agriculture, Min-

ing; Construction, Utilities, Transportation; Manufacturing, and Trade, Service. The Home

sector can be considered as an outside option when workers are not employed by the market

sectors.13 Workers’ problem is identical for home-employed workers. First two market sectors

are traditionally more carbon-intensive and will be referred to as carbon-intensive.

With the realization of shock, each worker i works for particular sector j at time t receives

wji,t and an idiosyncratic benefit ϵji,t. The idiosyncratic benefit can be considered as non-

monetary benefit. Workers can like the location, sector, or colleagues, these features will be

13 Home sector can be considered as a big sector which unemployed workers, non-employed or not in labor force
population works and earns goods that is needed for the survival.
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considered as idiosyncratic benefit in this model. At each time t workers can either stay in the

same sector or move to another sector but moving incurs a cost. Cost of moving from sector j

to k for an individual i is Cjki and time invariant. Workers have rational expectations about

future and forward looking.

3.2 Workers’ utility

Following ACM, utility is additive separable, for worker i working for industry j at time t and

takes the following form.

V j
i,t = wji,t +max

k
{ϵki,t − Cj,ki + βEt[V

k
i,t+1]} (1)

Lifetime expected utility of an individual is the sum of current wage and future utility.

Wages and moving costs directly affect utility, so workers care about these two features in

the decision-making process. If a worker decides to switch sectors a disutility occurs due to

switching costs.14 Cost and wages are additive and measured in terms of utility.

If an individual switches from sector j to k, in addition to monetary costs, she will lose the

non-monetary benefits of j (ϵji,t), but she will gain the non-monetary benefit of being in sector

k (ϵki,t). Thus, the total cost of switching from j to k for worker type i can be written as

Cjki + ϵji,t − ϵki,t

For marginal worker i cost of moving should be equal to expected future benefit.

Cjki + ϵji,t − ϵki,t = βEt[V
k
i,t+1 − V j

i,t+1] (2)

In the beginning of t each worker solves the following problem:

V j
i,t = max

k
{wki,t − Cj,ki + ϵki,t + βEt[V

k
i,t+1]}

14 In this model, individuals age and education do not change over time so there is one moving cost for each type
of worker.
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Following ACM, the idiosyncratic benefit being employed in industry has an Extreme Value

Type 1 distribution with zero mean and and π2η2/6 variance.

3.3 Production side

Environmental regulations will affect labor demand through energy input. Each sector has

a different need for energy input, and female and male workers might serve as substitutes or

complements depending on the sector. There is evidence that female-male workers are more

complements in ”brown jobs” while they are perfect substitute in service sector.15 To capture

heterogeneous labor demand changes, I introduce a nested Constant Elasticity of Substitution

(CES) production function for market sectors.

Output produced at time t in industry j bring aggregate labor and energy based on a

Cobb-Douglas production function.

Y j
t = Aj(Ljt )

θj (Ejt )
1−θj where j ∈ J ≡ {market sectors} (3)

The efficiency term is Aj and does not change over time. The energy used in sector j at time

t is Ejt , while the aggregate labor is Ljt .

Aggregate labor is a composite of low-and high-educated subgroups. CES sub-aggregation

allows imperfect substitution between two education groups for each market sector.

Ljt = [αj1(L
j
l,t)

ρj1 + (1− αj1)(L
j
h,t)

ρj1 ]1/ρ
j
1 (4)

Low- and high-educated labor groups in industry j at time t are Ljl,t and L
j
h,t. Efficiency of

the labor is α1 while ρ1 is degree of substitutability between education groups and represented

by −∞ < ρ1 ≤ 1 and ρj1 = 1 − 1/σjs in which σjs is elasticity of substitution between two

education groups in industry j.

For each market sector, female and male workers in a particular education group will create

CES education aggregator. This aggregation will allow female-male complementarity across

15 Existing literature that considers elasticity of substitution between female and male workers provide estimates
ranging from 0.5 to 2.5. Olivetti and Petrongolo (2014) argues men and women are perfect substitutes but in ”brawn”
industries substitution is lower than service.

10



skill groups and sectors.

Ljl,t = [αj2(L
j
fl,t)

ρj2 + (1− αj2)(L
j
ml,t)

ρj2 ]1/ρ
j
2 (5)

Ljh,t = [αj3(L
j
fh,t)

ρj3 + (1− αj3)(L
j
mh,t)

ρj3 ]1/ρ
j
3 (6)

The role of the α in equations 5 and 6 is analogous to equation 4. However, ρj2 is the

degree of substitutability of female and male workers in the low-educated group in sector j,

while ρj3 is for the high-educated group. They can be written as : ρj2 = 1− 1/σjlg in which σjlg

is elasticity of substitution between females and males for the low-educated group in sector j

while ρj3 = 1− 1/σjhg is for the high-educated group.

There is one aggregate output of home sector, and this sector only utilizes the labor of each

type. Each type’s productivity in home market differs, and represented by ωi
16. Efficiency of

aggregate labor in home sector is Ahome.

Y home
t = Ahome

4∑
i

λiLi,t where i ∈ I ≡ {fl,ml, fh,mh} (7)

3.4 Equilibrium

Workers have identical preferences over consumption goods and worker i at time t, and get

utility from consuming goods from all sectors and it is additive separable to worker utility

represented in equation 1.17

U(Ct) = log(Cjt )

16 This model assumes everyone is single but individuals produce one single non-market output. Home sector is
considered as what people eat while they are not in market sectors, so they engaged mostly in home production
activities. We know from home production literature females’ productivity and high-educated people’s productivity
is higher in home sectors.

17 This does not necessarily imply that their consumption is identical since they earn different wages, and they
have different budget constraints.
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Good across sectors are aggregated by Cobb-Douglas aggregator.

Cjt =
J∏
k=1

(cki,t)
ψk

where
J∑
k=1

ψk = 1

ψk is final consumption share of sector k good. Price index follows standard Cobb-Douglas

form, in which P kt is price index of good purchased from industry k.

Pt =
J∏
k

(P kt /ψ
k)ψ

k

All markets are clear, in which quantities supplied are equal to quantity demanded. Markets

are perfectly competitive, thus firms are price-taking, and input prices equal their marginal

products. Real wage for each worker at time t and sector j will be equal to marginal product

of their labor. Appendix A.1 shows the derivation of wages for each type.

wji,t = (∂Y j
t /∂L

j
i,t)/Pt

3.5 Estimating Equation for Moving Costs

Following mobility assumptions in ACM and Caliendo et al. (2019), the idiosyncratic shocks are

independent and identically distributed (i.i.d.) over time, follow an Extreme Value (EV) Type

1 distribution with a zero mean and a variance of π2η2/6. As used in most dynamic discrete

choice models, extreme value distributions enables closed-form solutions with tractability and

iid assumption would allow for aggregation of idiosyncratic decisions. Cumulative distribution

of idiosyncratic shocks are represented as:

F (ϵ) = exp(−e−ϵ/η)

With the EV Type 1 distributional assumption, gross flow of workers transitioning from in-

dustry j to k, denoted as mjk, can be written as a function involving the variance of costs, η,

and the differences in expected utility along with explicit costs, Cjk. Appendix A.2 explains

in detail how to derive flows by using EV Type 1 properties. Gross flows from industry j to k
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will be written as:

mjk
i =

exp[((1/η)(βEt(V
k
i,t+1 − V j

i,t+1))− Cjki ]∑N
0 exp[((1/η)(βEt(V n

i,t+1 − V j
i,t+1))− Cjni ]

Gross flows from j to k is represented as value of being in industry k is greater than any other

industry n, which is similar expression to other discrete choice models. This expression tells

that for worker type i, industry with higher lifetime utility should experience higher gross

flows. Using marginal mover’s decision, gross flows representation and the fact that staying

in same sector does not incur any costs, moving costs can be recovered under rational expec-

tations assumption. Following equation will recover monetary and non-monetary components

of mobility costs.

(lnmjk
i,t − lnmjj

i,t) =
β − 1

η
Cjki +

β

η
(wki,t+1 − wji,t+1) + β(lnmjk

i,t+1 − lnmkk
i,t+1) + µi,t+1 (8)

According to Equation 8, current gross flows from industry j to k for type i depend on future

wage differentials between sectors for type i, expected future gross flows, and cost of moving

for worker i. It is important to note that Et(µi,t+1) = 0 due to rational expectations, and

under rational expectations future gross flows are sufficient statistics for expected future gross

flows. Under these assumptions, both left and right hand-side of equation 8 can be identified

in data, ultimately C and η can be recovered.

The coefficient of wage differentials, β/η, can be interpreted as the sensitivity of flows to

wage differentials across sectors. The time discount factor, β is common for all workers and

known.18 For a specific time discount value, if the flows exhibit greater responsiveness to wage

differentials, this would suggest a lower value of η, indicating a low variance of idiosyncratic

shocks. Since this would imply that non-monetary factors have a limited influence on moving

decisions after accounting for wage differentials, I will refer to η as the importance of non-

monetary factors for the rest of the paper.

Estimated β/η in which β is known and a common η for all workers, can be used to recover

the differential monetary cost, C, for both female and male workers.19 Explicit mobility

18 This paper does not estimate time discount parameter, instead uses estimated values from literature. Given the
magnitude of β could directly affect the estimated moving costs, and relative assessments, I provide estimates with
different time discount parameters in the Counterfactual Scenarios Section.

19 Estimation relies on the assumption that η is same for all workers. Considering the meaning of η, as the variance
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costs are represented by C, and for the remainder of the paper, I will use the term ”mobility

costs” to refer to C. The Ordinary Least Squares estimation of Equation 8 may be biased, as

unobservable factors that could explain gross flows between sectors might be correlated with

expected wage differentials.20 Following the literature, in particular Artuç et al. (2010) and

Caliendo et al. (2019), I use lagged flows and wages as instruments for wages. Instruments,

(lnwki,t−1− lnw
j
i,t−1), (lnm

jk
i,t−1− lnm

jj
i,t−1),(lnm

jk
i,t−2− lnm

jj
i,t−2), are used to estimate Equation

8 with Generalized Method of Moments (GMM) method. Exclusion restriction assumption is

unobservable factors, µi,t+1, are not correlated over time. While this assumption may appear

restrictive, the literature places significant emphasis on its advantages, with a more detailed

explanation available in Artuç et al. (2010).

4 Data

To estimate the moving costs across sectors and the model, I use multiple publicly available

data sources. I estimate the key parameters of the model and calibrate elasticity of substitution

parameters.

4.1 Annual Gross Flows Across Sectors and Wages

Moving costs are expected to be different across market sectors and outside of the market,

I first define gross flows and average wages for each worker across market sectors. Then, I

elaborate on how to account for flows from home (outside the market) and to home.

4.1.1 Across Market Sectors

I use the Current Population Survey (CPS) March Supplement (Flood et al., 2022) from 1976

to 2019 for annual gross flows across sectors and annual mean wages for each type.21 I restrict

indicating the responsiveness of flows to wages, this could be a restrictive assumption. One can argue that female
workers are less responsive to wage differentials for moving decisions, placing more emphasis on external factors like
family obligations. To understand the restriction of this assumption, I estimate the moving cost for separate samples
that η does not need to be same across gender groups. It will be explained in more detail in the Counterfactual
Scenarios.

20 For example, a female worker may switch to service sector from manufacturing because of flexible working hours.
However, this choice could also be correlated with wages differentials, as she may have to forego potential earnings
growth in favor of flexibility.

21 Estimating of switching costs requires knowing gross flows across sectors for each type. The March Supplement
has the question ”industry that longest job held in the last year” and current industry for each individual that is
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the sample whose age is between 25 to 60, and workers who finished bachelor’s degrees or more

are considered high-educated, while workers who do not have bachelor’s degrees are considered

low-educated.22

I aggregated market sectors into four main categories. The first comprises agriculture and

mining, the second includes construction, utilities, and transportation, the third is manufac-

turing, and the fourth involves trade and services. The first two sectors are traditionally

carbon-intensive and will be referred to as such throughout the rest of the paper. Table 1

shows observations and mean wages for each type of worker in every aggregated sector. In

carbon-intensive sectors, the proportion of low-educated men is significantly higher than that

of low-educated women. As anticipated, the segregation is less evident at higher education lev-

els. On average, women’s wages are lower than men’s across all sectors and education groups.

On average, carbon-intensive sectors offer higher pay compared to low-carbon sectors for each

worker type.

Table 2 shows raw average gross flows between 1976 to 2019 for men and women.23 Rows

represent the origin sector while columns show destination sector. Diagonals show stayers

in particular sector. Independent of origin sector; female workers move to low-carbon than

male workers.24 For instance, on average, 19.5% of women in the construction, utilities, and

transportation sectors transition to trade and service sectors, while only 9% of men in this

sector make the same switch. In carbon-intensive sectors, female outflows are roughly double

those of men.

4.1.2 Between Market Sector to Home

To estimate the cost of moving to home sector, data on wages and gross flows to home sector

are needed. Gross flows to home can be derived from CPS non-market flows. If an individual

considered as gross flow for individual i.
22 If workers stated they are were employed more than 26 weeks last year and earn less than 2000 or stated more

than 300,000 income, I drop these observations from market-sector sample. Workers who work more than 26 weeks
are considered full-time employed.

23 The term ”raw” is used here because, in existing literature, the contention is that CPS flows can account for
five months of flows rather than yearly flows (Kambourov and Manovskii, 2004). In my analysis, I adjusted these
flows to represent movements over a year; however, the data presented in this table depicts the unadjusted CPS flow
rate. Following Artuç et al. (2010); Caliendo et al. (2019), I derived 12-month flows from observed data to recover
mobility costs.

24 I also analyzed average gross flows by education levels, finding no difference in moving rates among these groups.
Low and high-educated women exhibit similar moving patterns, while low- and high-educated men move less than
women.
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indicated not working last year but claimed to be currently employed, this will be regarded as

a gross flow from the home sector to the market sector.25

Potential wages for non-working individuals are not observable which has been a central

issue in labor economics. The value of home production offers an avenue to calculate home

wages, as my model considers home sector where people who are not employed or not in labor

force put their time. Potential wages for workers who are in home sector will equal to time

spent in home production multiply by their opportunity cost of time.26 As non-employed

sample is a selected group, I follow Heckman (1979) to correct sample selection, and estimate

weekly wages for non-employed. Appendix A.3 explains in detail the construction of home

sector and the home wages.

Table 3 depicts average flows across any market and home sector. For female workers, flows

from the market to the home sector are higher, and once in the home sector, the tendency to

stay within that sector is also more pronounced among female workers. Table 4 details the

correlation between average home and market wages for both women and men. Constructed-

annual wages at home sector are higher for women, aligning with existing literature indicating

a positive gender gap in the home sector (Albanesi and Olivetti, 2009). In Figure 1, displays

trends in home wages, indicating that this gender gap has persisted over the years.

4.2 Parameters of the Model

The baseline model is calibrated to the 2005 U.S. economy. Notation zero denotes values

in 2005, marking the economy’s starting point. As the aggregate production function has a

Cobb-Douglas form, θ represents the cost share of labor in gross output of that sector. The

U.S. Bureau of Labor Statistics (BLS) provides the cost share of labor by industry. The initial

distribution of labor, L0, is derived from CPS March supplement for 2005, which was used

in the flow derivation in previous section. Initial energy input use and gross output levels by

industry, Y0, are obtained from the Bureau of Economic Analysis’s tables.

I calculate the technology parameter, A, using baseline year production levels with func-

25 Flow from home to market is constructed by using ”workly” variable which indicates whether the respondent
worked any time in the calendar year previous to the survey year and current status as ”employed”. Flow from
market to home is the opposite direction.

26 While replacement cost is also considered as one other method, in practice results are similar. Home wage
should be equal to time spend in home production activities multiply by opportunity cost of time for each individual.
Construction of home annual wage will be equal to hours spend in home production for each type and year.
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tional form. Following expression will provide A.27

Aj0 = Y j
0 (1/L

j
0)
θj0(1/Ej0)

1−θj0

Elasticity of substitution between education and gender groups are calibrated with values in

the literature, and these parameters can be considered as model-free parameters. I calibrate

elasticity between high- and low-educated workers (σ1) 1.42 as a common value in literature,

following Katz and Murphy (1992).

Elasticity of substitution between female and male workers may vary across sectors and

education groups. Female and male workers are less substitutuable in low-educated group

compared to high-educated (Acemoglu et al., 2004), while substitution in goods sector is

lower than service sector (Olivetti and Petrongolo, 2014). Literature shows lower bound for

substitution between 0.5 to 0.7 (Ghosh, 2018; Severini et al., 2019), while upper bound is 2.5

to 4. (Olivetti and Petrongolo, 2014). There is more evidence for more conservative estimates

within the range of 1 to 1.4 (De Giorgi et al., 2015). This paper uses lower bound for low-

educated workers in carbon-intensive sectors, while upper bound is taken for all education

levels in for non-carbon sectors, and high-educated workers in carbon sectors.28

Using the elasticity of substitution parameter and the First Order Conditions (FOC) for

wages derived in Appendix A.1, it is possible to determine the share of specific labor in

production, αj1, α
j
2, α

j
3. Right hand side of the equation 9 can be observed in data, given

elasticity of substitution (σ̂), values for αj2 can be calculated.29

ln(αj2/(1− αj2)) = ln(wjfl0/w
j
ml0) + (1/σ̂)ln(Ljfl0/L

j
ml0) (9)

Since home goods are considered a perfect substitute for particular market services (Ngai and

Petrongolo, 2017), Y0 for the non-market sector is targeted to match with services such that

represents perfect substitution for home production.30 Calibration of λf,m, the comparative

27 Values of gross output, employment level, and energy input are normalized.
28 This assumption follows Olivetti and Petrongolo (2014)’s argument of good sectors considered as ”brawn”, while

service sector is considered as ”brain”, which reflect the elasticity of substitution between female and male workers.
29 Equation 9 shows calculation of α2 which represents the share of low-educated female and male workers in

production. Similarly, low-and high-educated aggregates are used for α1, and for α3 high-educated female and male
worker aggregates are used.

30 Following Aguiar et al. (2012), I consider food away from home, alcohol away from home, vehicle maintenance,
taking care of adults, personal services, household operations.
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productivity of female labor to male labor in the home sector, is driven by the home sector

wages. As explained section 4.1.2, I calculate potential wages for home sector for each type,

and ratio of wages will provide the efficiency of the labor according to 7 and normalized.

Initial total labor employed in home sector is matched CPS 2005 non-employed population

and normalized.

whomei = (∂Y h/∂Li) → whomef /whomem = λf,m

Final consumption share of each sector ψj is the expenditure share of each sector’s goods due

to property of of Cobb-Douglas. Home sector final share is to match the expenditure share of

services that are perfect substitute to home sector goods. Table 5 shows all parameters of the

baseline model.

5 Results

5.1 Moving Costs Across Sectors

I estimate average moving costs across sectors for female and male workers by applying data to

Equation 8 with a common time discount parameter.31 This estimation does not differentiate

sectors but considers the average moving costs resulting from any direction of gross flows.

Table 6 shows moving costs in terms of normalized average annual wages. In the first

column, female workers need to forgo 2.24 times the average wages to switch industries among

market sectors, while male workers need to give up 1.6 times the wages. Both estimations

are statistically significant, indicating that moving costs are not negligible and are more pro-

nounced for women. If flows are fully responsive to wage differentials, other non-monetary

factors would have a limited role in moving decisions across market sectors, resulting in a low

η estimate. I find that η is small, 0.68, indicating that flows across market sectors are highly

responsive to wage differentials.32

31 I dropped the education groups because female data for some sectors have too little observation for different
education groups which would not allow me to credible estimate mobility cost.

32 Underlying assumption is both female and male workers have the same non-monetary constraints in moving
decisions. However, this may not hold in many cases. I also estimate η by using only female and only male data.
Counterfactual Scenarios section provides detailed explanation for varying non-monetary value for female and male
workers. Since the estimation of η was similar for both samples, I assume non-monetary importance is the same for
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As a second step, I estimate the moving costs between home and any market sectors.

In Table 6, second column shows cost of switching between market and non-market (home)

sectors. Leaving the market sectors is equally costly for both genders, and it is more costly

than switching across market sectors. Both men and women need to give up approximately

four times of their annual wages to for any move between home and market sectors. Non-

monetary importance is 3.3 which is higher than non-monetary importance in decision moving

across market sectors.

Results are intuitive, as moving market sectors might be driven by wage differentials

and better economic opportunities, and moves related to the home might be driven by non-

monetary factors like family-related reasons or employer-initiated separations. Compared to

transitioning between market sectors, decisions involving home incur higher costs, suggesting

reentering the labor market involves greater barriers than remaining in the market but switch-

ing to a different sector. I find higher mobility costs for female workers, which is consistent

with research on displacement costs (Jacobson et al., 1993; Illing et al., 2021; Ivandić and

Lassen, 2023) and mobility costs (Dix-Carneiro, 2014; Ashournia, 2018).

5.2 Simulation: An Energy Tax

To understand the role of mobility costs in an environmental regulation setting, I estimate the

model and impose a tax on energy input. I assume the price of energy input increases 15% at

year 5, and worker can respond to this shock by changing their sector with estimated costs in

Section 5.1.33 Other prices are determined endogenously inside the model.

I study female and male workers’ discounted lifetime utilities, 30 years following the tax, to

account for possible welfare effects in the long run. Table 7 shows long-run percentage changes

for each type of worker for each sector. Relative changes in welfare are more substantial for

female workers relative to male workers for all education groups and sectors.34 Workers who

remain in carbon-intensive sectors are affected by the tax, while those in non-carbon sectors

everyone for the main model.
33 This paper takes energy tax as exogenously given. In carbon tax arguments, the most common pricing is 50$

per metric tonne of carbon dioxide (Metcalf, 2019), while this would translate to differential increases for fossil fuels
prices, ranging from 14% to 207% (Metcalf et al., 2008). This paper considers the most conservative estimation for
the main analysis.

34 One limitation of the model is having the same moving costs across education levels and sectors. Low- and
high-educated female workers have 2.24 moving costs, and low- and high-educated male workers have 1.6. However,
wages are different for each education level in each sector.
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may face spillover effects, as workers from carbon-intensive sectors can move to non-carbon

sectors. Workers would bear the cost of moving, which would reflect their change in discounted

lifetime utilities. The biggest relative decline in welfare is experienced by high-educated female

workers across all sectors.

Substantial declines happen in home-sector individuals for all education levels, both men

and women. Moving from and to home imposes higher costs on workers; in case of an energy

tax in which the hiring rate might decline, these costs can create additional barriers to entry

into the labor market. Differences between men and women in the home sector are relatively

small, as opposed to differences in market sectors, potentially indicating the role of similar

moving costs in the home sector. Compared to transitioning between market sectors, decisions

involving moves related to the home incur higher costs, suggesting reentering the labor market

involves greater barriers than remaining in the market but switching to a different sector.

5.2.1 Counterfactual Scenarios

Different Time Discount Rates and Separate Sample

I use a common time discount parameter from the literature to estimate moving costs

in Section 5.1. Intuitively, as β gets low, moving costs should be smaller since individuals

discount less future benefits of the new sector. I estimate costs with different time discount

parameters from the literature to assess the sensitivity of the estimates to the choice of time

discount. Table 8 depicts the findings for two different future discounting parameters. The

estimated cost is lower with low β for both men and women. When the discount parameter is

0.97, female workers need to give up 3.55 times the average wages while male workers pay 2.26

times the wages. In all specifications, women have relatively higher moving costs than men.

In the model, η aims to capture the relative effects of non-monetary factors, such as prefer-

ence for a specific job, non-wage benefits, and location attributes, on moving decisions. Women

and men behave differently in the labor market, and it is expected that non-wage factors will

affect their choices differently. Thus, I estimate moving costs using female-only and male-only

samples, allowing non-monetary factors (variance of idiosyncratic shocks) to be independently

estimated for each sample. Table 9 shows average moving cost and importance of non-monetary

for each separate sample and relative results with different time discount values. While the
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importance of non-monetary factors is similar for both samples with different time discount

values, it is slightly higher for female workers.

Estimations with different time discount parameters and separate samples conclude with

similar results to the main analysis. The main result, indicating that women experience rela-

tively higher mobility costs than men, is not sensitive to the choice of time discount parameter

or the assumption of a common non-monetary factor.

Simulation with Same Moving Costs

To understand the role of moving costs in determining long-run welfare losses, I study

the counterfactual scenario in which female workers have the same mobility costs as male

workers. If differences in the long run are driven by market structure, even if a policy makes

the transition easy for women, disparities in long-run welfare would persist.

Table 10 shows results when female workers’ mobility costs are equal to male workers and

provides a comparison with the main results. The difference in changes in welfare between

high-educated females and males diminishes, as low-educated women still experience slightly

greater losses compared to low-educated men, although the difference is less than 1%. Results

suggest mobility costs drive long-run differences in welfare, implying substantial mobility costs

have significant long-run distributional consequences. Findings suggest any policy targets

women, and their transition to green employment may have the potential to alleviate the

long-run welfare gap.

6 Local Labor Markets

6.1 Coal-fired Power Plants and American Community Survey

EIA-860 yearly survey contains detailed information on electric generators and plants in the

US. The survey’s generator segment shows which technology is used (such as conventional

steam coal, natural gas, wind, hydroelectric, solar), generator nameplate capacity in megawatts

(MW), the power plant that generator is part of, and which utility owns the power plant.35

In particular, current and future of status of generator is documented. For active generators,

35 Nameplate capacity is the highest value the generator can produce in MW rounded to the nearest tenth. Each
power plant might have more than one generator with different nameplate capacities. Each utility might have different
power plants with different technologies.
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there is a specific question whether there is a planned retirement in the 5-year window, while

it is not legally binding to report a planned retirement date.36 For retired generators, details

include the retired capacity and the year of retirement.

To understand local labor market responses to anticipation of closure, I aggregate the

generator-level data to plant level. I sum across the generator nameplate capacity to obtain

plant-level capacity and planned-retired capacity for the year. EIA-860 survey provides de-

tailed information on the location of the plant-level data, including state, county, and zip

code. It is expected that multiple plants will serve one local market, or one plant can be at

the intersection of multiple local markets. I match the zip code of the power plants to ACS’s

PUMAs by using existing weights in the crosswalk provided by the University of Missouri.37 I

build a coal-fired power plant data by PUMA showing total capacity, if there is a retirement,

when did the first retirement happen when is the last retirement, when maximum capacity got

retired, operational capacity.38

Table 11 details the number of generators per PUMA, the total coal-fired capacity in each

PUMA, average generator age when retired, the active plants in 2019, and the projected

retirements and the corresponding PUMAs affected by these retirements over the next 20

years. In 2019, the active capacity of coal-powered plants stood at 243,956 MW distributed

across 631 generators. An estimated 51,930 MW among the active capacity is anticipated to

retire in the 45 years following 2019.39

I spatially link PUMA coal-power plant data to yearly ACS from 2010 to 2019, which

provides employment status, gender, age, education level, industry, wages, occupation, and

marital status of individuals.40 I follow the same classification as the first part of the paper:

36 2019 EIA-860 shows which coal power plants will get retired in 2058, 2040, or during the 2020s. Survey recently
changed the question ”If this generator will be retired in the next ten years, what is its estimated retirement date?
If you expect this generator to be retired in the next 10 years, enter your best estimate for this planned retirement
date in the format of month, day, year ” instead of a 5-year retirement window.

37 https://mcdc.missouri.edu/cgi-bin/uexplore?/data/corrlst/zip2_xxx
38 There can be multiple retirements in a PUMA and in this study, I consider the PUMA as retired when the

maximum capacity got retired. Instead of considering total retired capacity, I consider the total PUMA capacity to
understand the influence of coal-power plants in the community. For example, each PUMA may or may not contain
only one type of coal-power plant generator. One generator might be retired in 2015, while the bigger capacity is
expected to be retired in 2020. To assign the status of PUMA in these situations, I create when the first generator
retired in PUMA and when the highest capacity retired in PUMA.

39 This paper does not consider the period between 2019 to 2023 since the effect of COVID-19 might confound the
analysis.

40 PUMAs identifiers from 2010 to 2012 follow 2000 Census boundaries, while from 2012 to 2019 follow 2010 Census
boundaries. I use crosswalk provided by IPUMS between 2000 to 2010 Census boundaries, and obtain a unified 2010
PUMA identifier between 2010 to 2019.
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agriculture, mining, utilities, construction, and transportation are considered carbon-intensive

sectors, while the remaining as non-carbon sectors. The sample consists of workers whose age

is between 25 to 65; college graduates are considered as high-educated workers. As shown

in Table 12, PUMAs with an anticipated coal-fired power plant and stayed active coal-fired

power plants were similar in 2010.

Figure 2 and 3 illustrate differences between local labor markets with and without coal-fired

power plants. The female-to-male earning ratio is higher in carbon-intensive sectors and lower

in non-carbon sectors. However, in communities with coal-fired power plants, these ratios are

lower than the national averages. Female worker segregation also differs between communities

with and without coal-fired power plants. The share of women in carbon-intensive sectors

is lower, and segregation is more pronounced in coal-fired power plant communities. While

descriptive graphs might be driven by many factors that are out of the scope of this paper, it

potentially suggests initial conditions in local markets with coal-fired power plants might differ

for women, aligning with existing literature on market structure and gendered effects (Baum

and Benshaul-Tolonen, 2021; Petrongolo and Ronchi, 2020). This study considers local labor

markets with coal-fired power plants, and excludes markets without coal-fired plants. Figure 4

shows the map of local labor markets (as PUMAs) included in this study with total generation

capacities.

6.2 Research Design with Coal-fired Power Plants

Characterized by substantial coal dependence and transition into a low-carbon economy in the

last decade, local labor markets with coal-fired power plants can provide a setting that shows

how new regulations would interact with initial gender segregation in the local market. As

described in Section 6.1, these markets can differ from non-coal labor markets. I restrict the

sample to only areas with active or retired coal-fired power plants and study the anticipation of

closure.41 It is often the case that the EIA announces plant retirements years before closure,

as the EIA-860 survey provides data on planned retirement for a generator. The survey

includes voluntary disclosure of retirement plants in 5 years. However, Davis et al. (2021)

show announcements commonly occur three years before retirement.

41 Local markets with electric generators with different sources are not included in the model. Markets reliant on
wind or solar generators are expected to exhibit different dynamics compared to coal-dependent markets.
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Coal-fired power plant closures are not a one-time shock to the local labor market, and

I study whether there is a differential gendered effect in the anticipation of closures. The

capacity of the coal-fired power plant can significantly impact the employment levels and the

labor market’s dependence on coal-related jobs.42 To account for capacity effects, I consider 3

thresholds for the capacity; the first specification considers all capacities, while the second one

considers only when capacities are greater than 250 MW, and the third one considers when it

is greater than 1000 MW.43

I start by specifying the following:

ln(workerspt) = β1 [Anticipationpt × Ever Retiredp] +X′
ptγ + µst + ϵpt (10)

The dependent variable is the natural logarithm of the number of workers in PUMA p at time

t, or the natural logarithm of the number of female and male workers. Since expectations of

coal-fired power plant retirements would directly impact carbon-intensive industries, I estimate

Equation 10 for carbon and non-carbon sectors separately. Anticipation is a binary variable

equal to 1 if the retirement decision is listed in EIA-860, which is 5 years before the actual

retirement. I include a second specification; according to the literature, anticipation starts

before 3 years of retirement. Ever retired is also a binary variable, which is equal to 1 if

PUMA has a power plant that has retired at some point in the last decade.

PUMA level controls, percentage of white, the percentage living in urban areas, average

income, percentage of college graduates, percentage married are included inXpt. Year and state

fixed effects are included to account for aggregate shocks that affect all and to capture time-

invariant employment-related factors across states that might affect the dependent variable.

The identification assumption is that the labor composition of carbon and non-carbon

sectors with active coal-power plants PUMAs would be the same with PUMAs that would

experience a retirement except for the anticipation of retirement coal-power plant in 5 (or 3)

years. However, unobservable characteristics of PUMAs, ϵpt, might correlated with retirement

42 https://cnee.colostate.edu/wp-content/uploads/2021/08/Supporting-the-Nations-Coal-Workers-r

eport.pdf For example, if the name plate capacity is less than 250 MW, it is associated with the employment of 50
workers on average, while for more than 1000 MW is associated with 200 workers. It is possible that a local labor
market with multiple generators and high capacities can differ from an area with a single generator with a small
capacity.

43 Local markets with more than 1000 MW capacity might be specific and might be selected places, I show results
in Appendix A.4.1

24

https://cnee.colostate.edu/wp-content/uploads/2021/08/Supporting-the-Nations-Coal-Workers-report.pdf
https://cnee.colostate.edu/wp-content/uploads/2021/08/Supporting-the-Nations-Coal-Workers-report.pdf


decisions. 12 provides a snapshot of the of 2010 characteristics of PUMAs never experienced

a retirement and experienced a retirement later. Davis et al. (2021) find retirement decisions

are not related to local labor market conditions but rather driven by national factors (natural

gas prices, renewable portfolios) or plant-specific factors. EIA documents retirements between

2009 to 2019 were driven by stringent mercury regulations and Watson et al. (2023) argues

closures are driven by the increasing cost of production rather than local effects.44

As PUMA-level analysis provides insight into changes in the composition of the workers

across sectors, an individual-level analysis could show worker-level heterogeneity in adjust-

ments to anticipation of coal plant closure. I start specifying the following equation:

Yipt = β1 [Anticipationipt × EverRetiredip] +X′
iptγ + µst + ϵipt (11)

The dependent variable equal to 1 is worker i in PUMA p at the t is unemployed or employed

in the carbon-intensive sector. Individual level controls like age, marital status, race, and living

in urban areas are included, and anticipation is similar to Equation 10. State and year fixed

effects are also included to account for possible aggregate shocks. In second specification, I also

include PUMA fixed effects to capture time invariant local effects. I estimate this equation

on sub-samples of different education and gender for each capacity threshold. The dependent

variable is binary, and including fixed effects can create additional problems with logistic and

probit estimations. So, I use a linear probability model with fixed effects following Greene

(2004).

I also study dynamic effects to uncover possible pre-trends and their comparison with

anticipation and post-retirement period. While this paper does not study post-retirement

effects due to anticipation, it is important to fully capture the dynamic adjustments. I derive

an event study for the main estimation equation for unemployment with all capacities and the

most conservative specification.

44 https://www.eia.gov/todayinenergy/detail.php?id=44636 Identification assumption would be violated if
costly maintenance plants are concentrated in one area rather than distributed randomly. As generator age might
be correlated with high-maintenance costs, average generator age by PUMA in
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Yipt =
2019∑
t=2010

γt EverRetiredip +X′
iptγ + µst + θp + ϵipt, (12)

Anticipations regarding power plant retirement can affect other labor market outcomes.

Workers can adjust at an intensive margin by potentially reducing their working hours. To

assess the occurrence of such adjustments and their extent, I estimate Equation 11, with the

dependent variable, Yipt equal to the natural logarithm of number of hours worked per week

by worker i in PUMA p at time t and wages.

6.3 Anticipation Effects in the Local Labor Market

As coal power plant retirement decision enters the EIA-860 survey or public announcements

are made for retirement, adjustments in the local labor market would start.45 As mentioned

in Section 6.2, total capacity in PUMA might indicate different labor markets, so I consider

3 different sub-samples in terms of capacities. Table 13 shows results for all specifications and

sub-groups.

The first specification considers all capacities; while neither the total number of workers

nor female and male workers respond to being enlisted in the EIA-860 form, female workers

tend to leave the sectors, and female representation in the carbon sectors decreases by 7%

due to anticipation of retirement in the next 3 years. This effect gets stronger for the places

with higher capacities; it doubles in PUMAs with more than 250 MW capacity and almost

triples and becomes 22% for the PUMAs with more capacity than 1000 MW. This shows that

as carbon sectors are more influential (more capacity is correlated with more employment),

female workers tend to leave these sectors more due to anticipation. There is no significant

effect on male workers; both female and male workers do not move in anticipation of retirement

in non-carbon sectors.

As known, there is an existing gender imbalance in the carbon-intensive sectors. While

using natural logarithms has many benefits, dealing with skewness in the data percentage

change may mask the possible movements of male workers. I estimate the same analysis with

45 I exclude the post-retirement period since that period will be more related to mass layoffs and displacement of
workers. Appendix A.4.1 provides an analysis of post-period effects.
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the number of workers instead of the logarithm of the workers. Table 14 shows results for the

level of workers. As a coal-power plant in the PUMA enlisted in EIA-860 data, on average

13 male workers leave carbon-intensive sectors in these PUMAs in anticipation of retirement.

While almost the same number of men leave the carbon-intensive sector by anticipation of

retirement in 3 years, female workers also leave these sectors. All outflows happen in carbon-

intensive sectors, while men and women respond at different times and magnitudes.

Previous analysis changes in the composition of the carbon sector employment in antici-

pated PUMA. To understand individual responses and allow for additional breakdown of the

data by the educational group, I study whether the likelihood of being employed in carbon-

intensive sectors is changing by anticipation. As seen in Table 15 low-educated female workers

are less likely to be employed in carbon sectors in all-capacity and higher-capacity PUMAs

in anticipation of retirement, which is 3 years before the actual closure. In contrast, antic-

ipation does not affect the likelihood of being employed in carbon-intensive sectors among

high-educated female workers.

Is one group more likely to be unemployed compared to another group? I study the

likelihood of being unemployed for each group and each capacity specification in Table 16.

High-educated female workers are more like to be unemployed than high-educated female

workers who are in non-anticipated PUMAs. This finding is consistent for PUMAs with

different capacities and inclusion of PUMA fixed effects. All other specifications are not

significant, implying anticipation does not increase the likelihood of unemployment for male

workers and low-educated female workers. The finding suggests that low-educated female

workers leave carbon-intensive sectors but end up in non-carbon sectors, while high-educated

female workers are more likely to become unemployed. High-educated female workers might

have high reservation wages, which makes them leave carbon sectors and spend some time job

searching, while the results in low-educated female workers state they switched from carbon to

non-carbon sectors. On the other hand, male workers do not engage in any of these extensive

margin adjustments.

Low-educated male workers are the only ones who experience a reduction in hours worked

per week in anticipation of retirement; while effects disappear when PUMA fixed effects are

included. There is no significant effect on female workers’ hours, high-educated male workers
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only in high-capacity markets increase their time in the labor market as shown in Appendix

A.4.2. Figure 5 and 6 shows dynamic effects of unemployment and usual hours worked (in-

cluding post-retirement period) with PUMA fixed effects across education and gender groups.

Appendix A.4.1 shows event-studies for wages. Findings suggest that high-educated female

workers in disproportionately affected by the anticipation of power plant closure.

7 Conclusion

The transition to a green economy, aimed at reducing the dependence on carbon-intensive

sources, is expected to change employment across sectors. Distributional effects will depend

on extent to which workers can adapt to changes and how the existing labor market structure

interacts with new regulations. This study examines the distributional impacts, primarily

emphasizing the gender dimension. There is limited evidence on the labor mobility of female

workers, and carbon-intensive sectors are predominantly male-dominated. One key finding is

that the cost of switching market sectors is significantly higher for female workers compared

to their male counterparts, and leaving the market imposes higher costs than intersectoral

moves. As mobility costs have significant long-run distributional consequences, policies that

reduce such barriers for women can reduce and potentially eliminate gender differences in the

long run.

I also find the anticipation of coal-fired power plant closures displaces women in carbon-

intensive sectors. However, my current analysis cannot differentiate between whether the

employer or employee initiates these separations. Future work with longitudinal data and

with worker histories can shed light on the mechanism. As I find that high-educated women

are more likely to be unemployed (robust to all specifications), possible unemployment duration

and after-separation wages will help understand how women adapt to negative resource shocks

in the local labor market.

This study brings the gender dimension to the distributional effects of environmental regula-

tions discussions, an aspect which is often studied within limited scopes. The findings highlight

the significance of recognizing this gender dimension, emphasizing that mobility costs can give

rise to disparities in the transition to a green economy. In local markets with pre-existing

gender imbalances, gender inequality may be exacerbated.
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8 Figures and Tables

Table 1: Mean Wages for Each Type of Worker in Market Sectors

Current Population Survey 1976-2019

Low-Educated Female Low-Educated Male

Mean Wage Observation Mean Wage Observation

Ag, Mining 25,344 8,811 38,585 41,403

(26076.7) (34852.2)

Cons, Util, Trans 32,218 40,539 44,242 203,357

(22403.5) (33472.8)

Manu 27,793 99,501 44,783 212,806

(19138.8) (29823.4)

Tra, Serv 26,390 593,889 41,327 432,669

(22044.8) (33716.8)

High-Educated Female High-Educated Male

Mean Wage Observation Mean Wage Observation

Ag, Mining 44,877 2,536 70,424 5,905

(38969.2) (64556.3)

Cons, Util,Trans 52,267 9,156 73,126 28,257

(45448.5) (61788.3)

Manu 58,912 17,753 83,331 48,779

(47452.1) (62225.5)

Tra, Serv 47,700 270,775 77,303 252,907

(42701.2) (75364.7)

‡ Mean wages are in 2005 dollars and standard deviations are in parentheses.
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Table 2: Average Gross Flows Across Market Sectors 1976-2019

Female and Male Workers

Ag, Mining Cons, Util, Trans Manu Tra, Serv

Agriculture, Mining 0.814 0.056 0.033 0.096

0.794 0.014 0.024 0.168

Construction, Utilities, Transportation 0.010 0.867 0.033 0.090

0.005 0.775 0.025 0.195

Manufacturing 0.010 0.043 0.837 0.109

0.004 0.010 0.846 0.140

Trade, Service 0.007 0.037 0.035 0.920

0.002 0.009 0.015 0.973

Note: Rows represent origin sector while columns show destination sector. Diagonals show the stayers in particular
sector. Gross flows of female workers are shown in blue. This table shows gross flows from CPS sample,however
literature argues gross flows from CPS only capture 5-month mobility. For the mobility costs estimations, I correct
flows to represent annual flows.

Table 3: Average Gross Flows across Market and Home Sector

Female and Male Workers

Any Market Sector Home Sector

Any Market Sector 0.901 0.099

0.877 0.123

Home Sector 0.125 0.875

0.089 0.911

Note: As in Table 2, rows represent origin sector while columns show destination sector. Home sector is defined as
sector in which non-employed individuals are employed.
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Table 4: Constructed Home Sector Wages and Relation to Market Sector

Home Wages Market wages

Female Workers 18,509 30,794

Male Workers 16,022 47,138

Note: Home wages are constructed for each year by using ATUS and AHTUS surveys which is a sub-sample of
CPS. Market wages are also representing the sub-sample to be in harmony with the home sample. Appendix A.3

explains in detail how to obtain home wages.

Figure 1: Trends in Potential Constructed-Home Wages for Non-Employed

31



Table 5: Model Parameters

Model Specific Matched Parameters

Carbon Sectors Non-Carbon Sectors Home Source

Ag.,Min. Tran.,Util.,Cons. Manu. Tra.,Ser.

Aj 0.32 0.48 1.27 1.22 0.5 In Text

θj 0.92 0.35 0.89 0.84 1 Matched to BLS data

ψj 0.07 0.37 0.22 0.25 0.09 Matched BLS consumption share

αj1 0.91 0.95 0.81 0.47 In Text

αj2 0.17 0.15 0.34 0.65 In Text

αj3 0.17 0.08 0.28 0.5 In Text

Model Free Parameters

σj1 1.5 1.5 1.5 1.5 Katz and Murphy (1992)

σj2 0.7 0.7 0.7 1.2 Olivetti and Petrongolo (2014)

σj3 1.7 1.7 1.7 1.7 Ghosh (2018)

Estimated Parameters

Female Workers Male Workers

λi 1.17 1 Home Productivity

Ci 2.24 1.6 Moving Costs Market-Market

Ci 4.14 4 Moving Costs Home-Market

η 0.68 0.68 Non-monetary benefit
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Table 6: Average Moving Costs for Female and Male Workers

Average Moving Costs

β = 0.9

Across Market Sectors Between Market and Home

Female 2.24 (4.98) 4.14 (3.34)

Male 1.60 (6.67) 4.01 (2.89)

η- Non-Monetary Importance 0.68 (8.27) 3.30 (11.60)

† T-Statistics are in parenthesises

Table 7: Long-run Welfare Changes after Tax with Mobility - Simulation Results

% ∆ Present Discounted Lifetime Values

Carbon Sectors Non-Carbon Sector Home

Low-educated Female −1.4 −2.4 −6.9

Low-educated Male +0.01 −0.21 −5.4

High-educated Female −3.43 −4.76 −7.26

High-educated Male −0.8 −1.24 −6

Simulations are based on mobility costs estimated in Table 6, in which female workers have higher mobility costs.
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Table 8: Average Moving Costs with Different Discount Factors

Average Moving Costs

β = 0.95 β = 0.97

Across Market Sectors Market-Home Across Market Sectors Market-Home

Female 2.98 (3.004) 4.15 (1.614) 3.55 (2.041) 3.60 (0.822)

Male 2.02 (4.507) 4.09 (1.390) 2.26 (3.140) 3.66 (0.727)

η- Non-Monetary Importance 0.85 (7.151) 3.75 (10.70) 0.93 (6.671) 3.96 (10.33)

† T-Statistics are in parenthesises

Table 9: Average Moving Cost for Separate Samples

Average Moving Costs Across Market Sectors

Only-Female Sample Only-Male Sample

β = 0.97 β = 0.90 β = 0.97 β = 0.90

Cost 3.30 (1.569) 2.04 (2.717) 1.87(3.108) 1.32 (6.554)

η- Non-Monetary Importance 0.87 (2.316) 0.62 (3.023) 0.766(6.462) 0.557(8.067)

† T-Statistics are in parenthesises

Table 10: Long-run Welfare Changes Counterfactual Scenario

% ∆ Present Discounted Lifetime Values

Different Moving Costs Same Moving Costs

Carbon Non-Carbon Home Carbon Non-Carbon Home

Low-educated Female −1.4 −2.4 −6.9 −0.7 −1.1 −5.6

Low-educated Male +0.008 −0.21 −5.4 −0.3 −0.7 −4.9

High-educated Female −3.43 −4.76 −7.26 −1.3 −1.9 −6.5

High-educated Male −0.8 −1.24 −6 −1.2 −1.8 −6
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Figure 2: Female-to-Male Earnings Ratio Trends in Coal-Fired Power Plant PUMAs and Other
PUMAs

Figure 3: Percentage of Female Workers by Sector in Coal PUMAs and Other PUMAs 2010-2019
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Table 11: Coal-fired Power Plant Retirements

Retirement Year Total Capacity (MW) Number of Generators Number of PUMAs† Average Generator Age

2010 1,534 28 3 51

2011 2,254 30 5 61

2012 9,719 58 15 50

2013 6,568 48 9 48

2014 4,588 44 6 55

2015 16,391 103 24 53

2016 7,791 49 12 56

2017 4,973 24 4 54

2018 11,627 30 14 46

2019 14,352 59 17 47

Total Retired by 2019 79,797 473 109

Active by 2019 243,956 631 192 44

Planned Retirements

2020-2024 30,454 96 54 52

2025-2029 8,554 17 11 44

2030-2045 12,922 22 13 42

Note: PUMA sample is restricted to places with more than 60 MW capacity since smaller capacities are trivial.
PUMA retired year is the year that the maximum retirement occurred in PUMA. Total Capacity and Number of
Generator columns do not have these restrictions. Average Generator Age is average age of retired generators in
PUMA when they are retired. Planned retirement age reflect generators age in 2019.

Table 12: Coal-fired Power Plant PUMA Characteristics

PUMA Active PUMA Anticipated

2010 Indicators Mean SD Mean SD

Population 872, 699 1, 410, 469 1, 289, 965 2, 067, 923

White Share 0.85 0.13 0.84 0.14

Non-Urban Share 0.38 0.33 0.32 0.32

College Graduate Share 0.253 0.08 0.258 0.09

Unemployment Rate 7.58 2.37 8.74 2.26

Female LFPR 67.1 5.03 67.6 5.61

Average Income 36, 439 7854 36, 219 6992

Generator Age 22.7 17.4 32.4 21.8

% Carbon Employment 18.1 4.53 16.4 3.13

% Women Employment in Carbon 16.7 3.57 17.4 4.75

Total Observations (2010-2019) 2, 077, 088 1, 121, 628

Note: PUMA Active indicates that PUMAs with an active coal power plant in 2010 and these coal-power plants

never experienced retirement in the study period. PUMA Anticipated shows characteristics of PUMAs have active

coal-power plant in 2010, experience at least one retirement in some capacity. Carbon-intensive sectors defined as

agriculture, mining, construction, utilities, transportation.
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Figure 4: ACS PUMAs with Coal-fired Power Plants
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Table 13: Number of Workers by Anticipation of Retirement

Log(Worker) Log(Female) Log(Male)

Panel A: All Capacities

Carbon Sectors

Anticipation<5 -0.0552 (0.0401) -0.0583 (0.0412) -0.0554 (0.0409)

Anticipation<3 -0.0516 (0.0392) -0.0780∗ (0.0400) -0.0469 (0.0405)

Observations 302,083

Non-Carbon Sectors

Anticipation<5 -0.0346 (0.0377) -0.0331 (0.0385) -0.0363 (0.0371)

Anticipation<3 -0.0315 (0.0365) -0.0290 (0.0368) -0.0344 (0.0364)

Observations 1, 476, 976

Panel B: Capacities>250 MW

Carbon Sectors

Anticipation<5 -0.0717 (0.0429) -0.0810 (0.0445) -0.0717 (0.0440)

Anticipation<3 -0.0861 (0.0477) -0.1377∗∗ (0.0476) -0.0772 (0.0493)

Observations 246,663

Non-Carbon Sectors

Anticipation<5 -0.0561 (0.0404) -0.0569 (0.0403) -0.0545 (0.0410)

Anticipation<3 -0.0613 (0.0410) -0.0614 (0.0399) -0.0606 (0.0425)

Observations 1,185,925

Panel C: Capacities>1000 MW

Carbon Sectors

Anticipation<5 -0.0732 (0.0692) -0.1010 (0.0722) -0.0692 (0.0697)

Anticipation<3 -0.1424∗ (0.0748) -0.2228∗∗ (0.0928) -0.1282 (0.0742)

Observations 129,888

Non-Carbon Sectors

Anticipation<5 -0.0529 (0.0532) -0.0534 (0.0524) -0.0496 (0.0544)

Anticipation<3 -0.1168 (0.0710) -0.1198 (0.0686) -0.1099 (0.0750)

Observations 584,160

State-Year FE Yes Yes Yes

Note: Anticipation < 5 represents the time that generator announce retirement in EIA-860, and Anticipation < 3

is the median time between the actual announcement and closure. Carbon Sectors are defined as in paper which

is utilities, transportation, construction, mining and agriculture. Non-Carbon Sectors are manufacturing, trade,

and service sector. Regressions include state and year fixed effects. For PUMA level controls for average working

population age, percentage white, percentage high-educated, percentage living in urban area, percentage married,

average total income in PUMA. Standard errors are two-way clustered at the PUMA and year. Significance codes:
∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.
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Table 14: Number of Workers by Anticipation of Retirement -Level Analysis

Worker Female Male

Panel A: All Capacities

Carbon Sectors

Anticipation<5 -16.20∗ (8.787) -2.716 (1.907) -13.49∗ (6.971)

Anticipation<3 -17.97∗ (8.286) -3.386∗ (1.827) -14.59∗ (6.602)

Observations 302,083

Non-Carbon Sectors

Anticipation<5 -67.21 (48.98) -38.56 (26.82) -28.65 (22.29)

Anticipation<3 -63.44 (48.44) -37.19 (27.00) -26.26 (21.64)

Observations 1, 476, 976

Panel B: Capacities>250 MW

Carbon Sectors

Anticipation<5 -13.72 (7.752) -2.435 (1.735) -11.28 (6.175)

Anticipation<3 -20.66∗ (10.48) -4.448 (2.440) -16.21∗ (8.228)

Observations 246,663

Non-Carbon Sectors

Anticipation<5 -60.79 (42.76) -35.03 (23.27) -25.76 (19.63)

Anticipation<3 -63.74 (54.59) -36.86 (28.46) -26.89 (26.30)

Observations 1,185,925

Panel C: Capacities>1000 MW

Carbon Sectors

Anticipation<5 -7.611 (11.07) -0.6267 (1.502) -6.984 (9.751)

Anticipation<3 -20.98 (12.41) -3.777∗ (1.947) -17.20 (10.69)

Observations 129,888

Non-Carbon Sectors

Anticipation<5 -11.11 (37.16) -5.464 (20.78) -5.642 (16.50)

Anticipation<3 -66.13 (55.54) -35.92 (28.76) -30.21 (26.84)

Observations 584,160

State-Year FE Yes Yes Yes

Note: Anticipation < 5 represents the time that generator announce retirement in EIA-860, and Anticipation < 3

is the median time between the actual announcement and closure. Carbon Sectors are defined as in paper which

is utilities, transportation, construction, mining and agriculture. Non-Carbon Sectors are manufacturing, trade,

and service sector. Regressions include state and year fixed effects. For PUMA level controls for average working

population age, percentage white, percentage high-educated, percentage living in urban area, percentage married,

average total income in PUMA. Standard errors are two-way clustered at the PUMA and year. Significance codes:
∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.
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Table 15: Likelihood of being Employed in Carbon-Intensive Sectors by Different type of Workers
and Capacities

Carbon Employment

(1) (2) (3) (4)

Low-Educated Female

Anticipation -0.0033 (0.0021) -0.0024 (0.0027) -0.0043∗ (0.0023) -0.0036 (0.0023)

Observations 635,723 516,481

High-Educated Female

Anticipation -0.0015 (0.0025) 0.0020 (0.0038) -0.0011 (0.0030) 0.0002 (0.0048)

Observations 302,072 237,298

Low-Educated Male

Anticipation -0.0050 (0.0050) -0.0054 (0.0037) -0.0054 (0.0060) -0.0010 (0.0044)

Observations 740,404 601,391

High-Educated Male

Anticipation -0.0066 (0.0060) 0.0008 (0.0064) -0.0031 (0.0066) -0.0018 (0.0086)

Observations 273,513 214,220

State-Year FE Yes Yes Yes Yes

PUMA FE No Yes No Yes

Subset All Capacities All Capacities Capacities>250 Capacities>250

Note: Dependent variable is carbon employment and equals to 1 if employed in carbon-intensive sectors.

Anticipation represents 3 year before the actual retirement. Carbon Sectors are defined as in paper which is

utilities, transportation, construction, mining and agriculture and this is on sample that stated employed.

Non-Carbon Sectors are manufacturing, trade, and service sector. Regressions include state and year fixed effects,

and individual level controls such as age, race, marital status, living in a metropolitan area. Standard errors are

two-way clustered at the PUMA and year. Significance codes: ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.
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Table 16: Likelihood of being Unemployed Different Type of Workers and Capacities

Unemployment (0/1)

(1) (2) (3) (4)

Low-Educated Female

Anticipation 0.0021 (0.0019) -0.0027 (0.0026)) -0.0002 (0.0021) -0.0049∗ (0.0026)

Observations 684,934 556,180

High-Educated Female

Anticipation 0.0044∗∗ (0.0013) 0.0036∗ (0.0018) 0.0056∗∗ (0.0020) 0.0051∗∗ (0.0022)

Observations 311,402 244,477

Low-Educated Male

Anticipation 0.0035 (0.0020) 0.0001 (0.0027) 0.0014 (0.0027) -0.0010 (0.0025)

Observations 802,946 651,922

High-Educated Male

Anticipation -0.0014 (0.0012) -0.0037∗ (0.0017) -0.0004 (0.0017) -0.0033 (0.0020)

Observations 282,052 220,823

State-Year FE Yes Yes Yes Yes

PUMA FE No Yes No Yes

Subset All All Capacities>250 Capacities>250

Table 17: Intensive Margin Adjustments by Different Type of Workers and Capacities

Log(Usual Hours Worked Per Week)

(1) (2) (3) (4)

Low-Educated Female

Anticipation -0.0031 (0.0026) -0.0009 (0.0029) -0.0024 (0.0027) -0.0023 (0.0037)

Observations 579,772 471,398

High-Educated Female

Anticipation 0.0006 (0.0032) -0.0041 (0.0052) 0.0023 (0.0046) -0.0024 (0.0048)

Observations 283,252 222,896

Low-Educated Male

Anticipation -0.0078∗∗ (0.0026) -0.0026 (0.0015) -0.0062∗∗ (0.0021) -0.0019 (0.0017)

Observations 666,242 542,576

High-Educated Male

Anticipation 0.0007 (0.0026) -0.0007 (0.0030) -0.0016 (0.0025) -0.0001(0.0023)

Observations 247,686 194,087

State-Year FE Yes Yes Yes Yes

PUMA FE No Yes No Yes

Subset All All Capacities>250 Capacities>250

Note: Dependent variables are being unemployed and natural logarithm of usual hours worked per week. This is on
the employed population.Standard errors are two-way clustered at the PUMA and year. Significance codes: ∗

p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.
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(a) Low-Educated Workers

(b) High-Educated Workers

Figure 5: Dynamic Effects of Unemployment for Different Education and Gender
Note:All capacities are considered and PUMA fixed effects are included.
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(a) Low-Educated Workers

(b) High-Educated Workers

Figure 6: Dynamic Effects of Hours Worked for Different Education and Gender
Note:All capacities are considered and PUMA fixed effects are included.
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Ivandić, Ria and Anne Sophie Lassen, “Gender gaps from labor market shocks,” Labour
Economics, 2023, 83, 102394. European Association of Labour Economists (EALE) Con-
ference 2022.

Jacobson, Louis S, Robert J LaLonde, and Daniel G Sullivan, “Earnings losses of
displaced workers,” The American Economic Review, 1993, pp. 685–709.

Kambourov, Gueorgui and Iourii Manovskii, “nA Cautionary Note on Using (March)
CPS Data to Study Worker Mobility, oMimeo,” University of Pennsylvania, 2004.

Katz, Lawrence F and Kevin M Murphy, “Changes in relative wages, 1963–1987: supply
and demand factors,” The Quarterly Journal of Economics, 1992, 107 (1), 35–78.

Kotsadam, Andreas and Anja Tolonen, “African mining, gender, and local employment,”
World Development, 2016, 83, 325–339.

Levanon, Asaf, Paula England, and Paul Allison, “Occupational feminization and pay:
Assessing causal dynamics using 1950–2000 US census data,” Social Forces, 2009, 88 (2),
865–891.

Macpherson, David A and Barry T Hirsch, “Wages and gender composition: why do
women’s jobs pay less?,” Journal of Labor Economics, 1995, 13 (3), 426–471.

Maurer, Stephan E and Andrei V Potlogea, “Male-biased Demand Shocks and Women’s
Labour Force Participation: Evidence from Large Oil Field Discoveries,” Economica, 2021,
88 (349), 167–188.

46



Metcalf, Gilbert E, “On the economics of a carbon tax for the United States,” Brookings
Papers on Economic Activity, 2019, 2019 (1), 405–484.

, Sergey Paltsev, John Reilly, Henry Jacoby, and Jennifer F Holak, “Analysis of
US greenhouse gas tax proposals,” Technical Report, National Bureau of Economic Research
2008.

Ngai, L Rachel and Barbara Petrongolo, “Gender gaps and the rise of the service econ-
omy,” American Economic Journal: Macroeconomics, 2017, 9 (4), 1–44.

Oaxaca, Ronald, “Male-female wage differentials in urban labor markets,” International
Economic Review, 1973, pp. 693–709.

Olivetti, Claudia and Barbara Petrongolo, “Gender gaps across countries and skills:
Demand, supply and the industry structure,” Review of Economic Dynamics, 2014, 17 (4),
842–859.

and , “The evolution of gender gaps in industrialized countries,” Annual review of
Economics, 2016, 8, 405–434.

Petrongolo, Barbara and Maddalena Ronchi, “Gender gaps and the structure of local
labor markets,” Labour Economics, 2020, 64, 101819.

Rendall, Michelle, “Female market work, tax regimes, and the rise of the service sector,”
Review of Economic Dynamics, 2018, 28, 269–289.

Robinson, Chris, “Occupational mobility, occupation distance, and specific human capital,”
Journal of Human Resources, 2018, 53 (2), 513–551.

Severini, Francesca, Francesco Felici, Noemi Ferracuti, Rosita Pretaroli, and Clau-
dio Socci, “Gender policy and female employment: a CGE model for Italy,” Economic
Systems Research, 2019, 31 (1), 92–113.

Vona, Francesco, Giovanni Marin, Davide Consoli, and David Popp, “Environmen-
tal regulation and green skills: an empirical exploration,” Journal of the Association of
Environmental and Resource Economists, 2018, 5 (4), 713–753.

Walker, W Reed, “Environmental regulation and labor reallocation: Evidence from the
Clean Air Act,” American Economic Review, 2011, 101 (3), 442–47.

, “The transitional costs of sectoral reallocation: Evidence from the clean air act and the
workforce,” The Quarterly Journal of Economics, 2013, 128 (4), 1787–1835.

Watson, Brett, Ian Lange, and Joshua Linn, “Coal demand, market forces, and US coal
mine closures,” Economic Inquiry, 2023, 61 (1), 35–57.

Weber, Jeremy G, “How Should We Think about Environmental Policy and Jobs? An Anal-
ogy with Trade Policy and an Illustration from US Coal Mining,” Review of Environmental
Economics and Policy, 2020, 14 (1), 44–66.

Yamazaki, Akio, “Jobs and climate policy: Evidence from British Columbia’s revenue-
neutral carbon tax,” Journal of Environmental Economics and Management, 2017, 83, 197–
216.

Yip, Chi Man, “On the labor market consequences of environmental taxes,” Journal of
Environmental Economics and Management, 2018, 89, 136–152.

47



A Appendices

A.1 Derivation of Wages for Market Sectors

Output produced at time t in sector j is Y j
t . Aggregate labor used for production of j is Ljt .

Energy used in sector j at time t is Ejt . Wages are equal to the marginal product of labor,

and differ by worker type and sector. In my model, there are 16 different labor market wages.

Production Function:

Y j
t = Aj(Ljt )

θj (Ejt )
1−θj

Marginal product of labor in j for type i:

W j
i,t =

∂Y j
t

∂Lji,t
× P jt

There are wages for 4 different workers in each sector j. Low-educated female workers who

works in sector j earn wjfl,t.

wjfl,t = Ajθjα
j
1α

j
2E

1−θjL
ρj2−1
f,l [αj2L

ρj2
f,l+(1−αj2)L

ρj2
m,l]

ρj1/ρ
j
2+(1−αj1)[α

j
3L

ρj3
f,h+(1−αj3)L

ρj3
m,h]

ρj1/ρ
j
3 ]θj/ρ

j
1

× [αj2L
ρj2
f,l + (1− αj2)L

ρj2
m,l]

(ρj1/ρ
j
2)−1

Low-educated male workers who works in sector j earn wjml,t.

wjml,t = Ajθjα
j
1(1−α

j
2)E

1−θjL
ρj2−1
m,l [αj2L

ρj2
f,l+(1−αj2)L

ρj2
m,l]

ρj1/ρ
j
2+(1−αj1)[α

j
3L

ρj3
f,h+(1−αj3)L

ρj3
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ρj1/ρ
j
3 ]θj/ρ

j
1

× [αj2L
ρj2
f,l + (1− αj2)L

ρj2
m,l]

(ρj1/ρ
j
2)−1

High-educated female workers who works in sector j earn wjfh,t.

wjfh,t = Ajθj(1−αj1)α
j
3E

1−θjL
ρj3−1
f,h [αj2L

ρj2
f,l+(1−αj2)L

ρj2
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48



High-educated male workers who works in sector j earn wjmh,t.

wjmh,t = Ajθj(1−αj1)(1−α
j
3)E

1−θjL
ρj3−1
m,h [αj2L

ρj2
f,l+(1−αj2)L

ρj2
m,l]

ρj1/ρ
j
2+(1−αj1)[α

j
3L

ρj3
f,h+(1−αj3)L

ρj3
m,h]

ρj1/ρ
j
3 ]θj/ρ

j
1

× [αj3L
ρj3
f,h + (1− αj3)L

ρj3
m,h]

(ρj1/ρ
j
3)−1

A.2 Derivation of Estimating Equation for Moving Costs

I derive estimating equation for moving costs using distributional effects of idiosyncratic ben-

efits, and this part of proof follows ACM. Probability of choosing k over different alternatives

means that for worker i utility in sector k is greater than other alternatives n:

mjk
i = Pr(V k

i > V n
i ) = Pr(Uki − Uni + ϵki > ϵni )

Imposing the CDF of EV Type 1 distribution, and treating ϵji as a conditioning variable,

probability of k is chosen for all j options, in which j ̸= k, conditional on ϵji can bu calculated

as follows:

mjk
i = P jki =

∫
f(ϵki )

∏
j ̸=k

F (ϵki + [β((Et[V
k
i − V j

i − Cjki ])− Et[V
n
i − V j

i − Cjni ])]︸ ︷︷ ︸
Option value being in k compared to any sector n → xk

)dϵki (13)

I call the option value of being in k as xk and being in j as xj to simplify the notation. In-

serting the PDF and CDF of EV Type 1 distribution with η variance and γ direction parameter

into equation 12 will provide following:

mjk
i =

∫
(1/η)(exp(−ϵki /η − γ)exp(−exp(−ϵki /η − γ))

∏
j ̸=k

exp(−exp(−(xk − xj + ϵki )/η − γ))dϵki

(14)

Since exp(−exp(−ϵki /η−γ) = exp(−exp(−(xk−xk+ ϵk)/η−γ)), equation 13 can be rewritten

as:
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mjk
i = (1/η)

∫
exp(−ϵki /η − γ)

∏
j

exp(−exp(−(xk − xj + ϵki )/η − γ))dϵki

Using the fact that product of exponential is the sums of the exponents, transformation of

exponential of products will result in following:

mjk
i = (1/η)

∫
exp(−ϵki /η − γ)exp(−

∑
j

exp(−(xk − xj + ϵki )/η − γ))dϵki

Factoring out ϵki from summation will simplify the expression of flows.

mjk
i = (1/η)

∫
exp(−exp(−ϵki /η − γ)︸ ︷︷ ︸

C

∑
j

exp(−(xk − xj)/η − γ)) exp(−ϵki /η − γ)dϵki︸ ︷︷ ︸
This term will be derivative of C

mjk
i = (1/η)

∫
exp(C

∑
j

exp(−(xk − xj)/η − γ))dC

I obtain the expression for gross flows by computing the integral:

mjk
i = (

exp(c
∑

j exp(−(xk − xj)/η − γ))∑
j exp(−(xk − xj)/η − γ)

)

∣∣∣∣∞
−∞

mjk
i =

exp(xk/η)∑
j exp(x

j/η)
) =

exp(β((Et[V
k
i − V j

i − Cjki ])/η)∑
j exp(−(xk − xj)/η)

Staying in the same sector does not incur a cost, Cjji = 0, and V j
i − V j

i = 0

ϵji,t − ϵki,t = βEt[V
k
i,t+1 − V j

i,t+1]− Cjki = η[lnmjk
i,t − lnmjj

i,t] (15)

Staying in one sector has an option value that can be measured as aggregate ”staying flows”
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but responsiveness varies with variance of ϵ.

Et[max
k

(ϵji,t − ϵki,t)] + βEt[V
j
i,t+1] = −η(lnmjj

i,t)

Using expression of flows in equation 14, the equation 2 in the main text can be rewritten as

follows:

Cjki + ϵji,t − ϵki,t = βEt[V
k
i,t+1 − V j

i,t+1]

= βEt[w
k
t+1 − wjt+1 + Cjki + ϵji,t − ϵki,t + V k

t+2 − V j
t+2]

Et[lnm
jk
i,t − lnmjj

i,t] = Et[(β/η)(w
k
t+1 − wjt+1) + ((β − 1)/η)/Cjki + β(lnmjk

i,t+1 − lnmkk
i,t+1)]
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A.3 Construction of the Home Sector

Definition of home production follows Aguiar et al. (2013), and includes activities involving

core home production related to home ownership, obtaining goods and services related to

households, and care for others (excluding children). I use the American Time Use Survey

(ATUS) and American Heritage Time Use Survey (AHTUS), which use information from

randomly selected individuals from the CPS sample.

Figure 7: Yearly Time Spent in Home Production for Non-Employed Women and Men

I calculate the average time spent in home production for each gender and year for indi-

viduals whose age between 25 to 60 who stated currently not working(including unemployed,

both laid off and looking for a job, or not in the labor force).46 Figure 7 shows trends in time

spent at home production for non-employed men and women. Women spend on average 250

hours in home production in a year, while it is 150 hours for men. When both genders are not

engaged in labor market work, women still spend more time in home production, and this gap

has not closed in recent years.

Potential wages for workers who are in home sector will equal to time spent in home

production multiply by their opportunity cost of time. As non-employed population is a

selected group, to calculate the opportunity cost of time , first I use Heckman Selection model.

46 ATUS is between 2003 and 2019, while AHTUS covers the period between 1975 and 2000. There are early years
that are not covered by AHTUS, and in the final stage to, home wages are interpolated to cover those years.
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In the first stage, using entire ATUS (Flood et al., 2023; Fisher et al., 2018), a probit model of

the probability of working is estimated, controlling for the individuals’ age, education, marital

status, and having kids under 5.

Pr(D = 1|Z) = Φ(Zµ)

Potential home wages are estimated in second stage by the following equation.

w∗ = X ′β + ρσuλ(Zµ)

The second stage estimates the earnings equation controlling for the individual’s age, level of

education, and living in a metropole, and I estimate potential wages for non-employed sample.

Table 18 depicts the first stage results and inverse mills ratio, while potential wages are

predicted by outcome equation section.

Table 18: Heckman Sample Selection

Estimate

Probit Selection Equation:

Sex −0.4610∗∗∗ (0.007)

Age −0.0278∗∗∗ (0.001)

Education 0.4677∗∗∗ (0.008)

Having Children under 5 −0.3218∗∗∗ (0.008)

Marital Status −0.0534∗∗∗ (0.004)

Outcome Equation:

Sex −280.651∗∗∗(5.419)

Age 6.8137∗∗∗ (0.251)

Education 467.4161∗∗∗ (5.423)

Living in Metropol 130.7470∗∗∗ (4.487)

Inverse Mills Ratio −109.5518∗∗∗ (22.230)

Observations 133,624

14 free parameters (df = 133611)

Adjusted R-Squared:0.2539

Note: Significance codes: ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.
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A.4 Local Labor Market Additional Results

A.4.1 Retirements Effects on Wages

Since the anticipation effects begin before the actual retirement of coal-fired power plants,

examining the retirement effects will be biased. Individuals who are left before retirement differ

from those who experience layoffs. In particular, Walker (2013) argues, leavers have lower than

average productivity while stayers are associated with above than average productivity, but

in anticipation of retirement employers can also take actions. As results should be interpreted

cautiously, I study the effect of the impact of retirement on the wages of both female and male

workers across all educational backgrounds. Post-retirement period might be associated with

displacement of workers of mass layoffs which is different than anticipation effects.

Similar to specification in anticipation part, I estimate the following equation.

Yipt = β1 [PostClosureipt × Closureip] +X′
iptγ + λst + ϵipt

Closure is equal to one if coal-power plant has the majority of the capacity retired in the

PUMA. Other variables are same as in the main text. The coefficient of interest, β1, is the

effect of finalizing the coal-fired power plant retirement. Dependent variable is log(wage) for

individual i lives in PUMA p at time t.

Table 19: Coal-Power Plant Retirement Effects on Wages

Total Carbon Non-Carbon

Female Male Female Male Female Male

Panel A: All Capacities

Retirement −0.0065 (0.0116) −0.0248∗ (0.0130) −0.0322∗ (0.0156) −0.0250 (0.0151) −0.0047 (0.0115) −0.0223 (0.0139)

State-Year FE Yes Yes Yes Yes Yes Yes

Observations 989, 257 1, 049, 110 59, 147 282, 517 930, 110 766, 593

Panel B: Capacities>250 MW

Retirement −0.0111 (0.0145) −0.0314∗ (0.0162) −0.0566∗ (0.0256) −0.0426∗ (0.0195) −0.0080 (0.0141) −0.0247 (0.0171)

State-Year FE Yes Yes Yes Yes Yes Yes

Observations 767, 200 815, 774 45, 890 223, 868 721, 310 591, 906

Panel C: Capacities>1000 MW

Retirement −0.0252 (0.0197) −0.0418 (0.0249) −0.1054∗∗∗ (0.0213) −0.0497∗ (0.0261) −0.0212 (0.0202) −0.0361 (0.0292)

State-Year FE Yes Yes Yes Yes Yes Yes

Observations 362, 147 387, 703 22, 004 113, 804 340, 143 273, 899

Note: Each column represents the sub-sample. Regressions include controls for age, race, education, metropolitan

status, marital status. Standard errors are two-way clustered at the PUMA and year. Significance codes: ∗ p<0.05;
∗∗ p<0.01; ∗∗∗ p<0.001.
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Table 19 shows wage effect for each sub-sample for different capacities. In Panel A, where

all capacities are considered, only male sample experience adverse wage effects. However, when

breaking down the total groups by carbon intensity of sector, only female workers in carbon

sectors will have a reduction in wages. For the PUMA to have an initial capacity of more

than 250 MW, female and male workers in carbon-intensive sectors will have negative effects,

while the effect is slightly bigger for female workers. For places with an initial capacity of

1000 MW, losses of females in carbon sectors are doubled, while for males, it stays the same

as earlier specifications. This shows that in places with high carbon-intensive industry shares,

male workers can be absorbed by big carbon industries and have a smooth transition. Table

20 shows results are driven by high-educated women and low-educated men in carbon sectors.

Table 20: Retirement Effects on Wages by Education Group, Capacities > 250MW

Log(Wage)

(1) (2) (3) (4)

Carbon Sectors

Retirement -0.0835∗∗ (0.0322) -0.0387 (0.0247) -0.0185 (0.0359) -0.0446∗ (0.0200)

Observations 10,791 35,099 27,739 196,129

Non-Carbon Sectors

Retirement 0.0086 (0.0193) -0.0195 (0.0134) -0.0206 (0.0226) -0.0297 (0.0163)

Observations 238,521 482,789 189,232 402,674

Subset High-Educ Female Low-Educ Female High-Educ Male Low-Educ Male

Year-State FE Yes Yes Yes Yes

Note: Each column represents the sub-sample. Regressions consider two separate panel. The first one is

carbon-intensive and second one is non-carbon sectors. Regressions include controls for age, race, education,

metropolitan status, marital status. Standard errors are two-way clustered at the PUMA and year. Significance

codes: ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001.

As wage adjustments can be dynamic, I provide an event-study for natural logarithm of

wages including PUMA fixed-effects for each education and gender group in carbon and non-

carbon sectors.

Yipt =
2019∑
t=2010

γt Retiredip +X′
iptγ + µst + θp + ϵipt, (16)

Figures 8 and 9 show wages in carbon-intensive sectors experience declines. High-educated

female workers’ wages do not recover over time after retirement, while negative effects on

wages for low-educated male workers disappear with inclusion of PUMA fixed effects.
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(a) Low-Educated Workers

(b) High-Educated Workers

Figure 8: Wages in Carbon-Intensive Sectors
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(a) Low-Educated Workers

(b) High-Educated Workers

Figure 9: Wages in Non-Carbon-Intensive Sectors
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A.4.2 Local Labor Markets with Capacities greater than 1000 MW

In local labor markets where high total capacity of generators, carbon sector employment is

more prominent, anticipation effects may diverge small capacity markets. For instance, the

impact of retirement might be limited as it affects only a fraction of the total workforce, or

other sectors related to carbon might have the capacity to absorb displaced labor. Table

21 presents data on unemployment rates, usual work hours, and carbon employment across

PUMAs with high capacity. The baseline specification is the same as in the main text, while

the secondary specification includes PUMA fixed effects.

In high-capacity markets, anticipation does not yield statistically significant effects on

carbon employment. However, in the preferred specification with PUMA fixed-effects, highly-

educated male workers experience less unemployment and longer working hours by anticipa-

tion. Unemployment effects for high-educated women disappears in high-capacity markets.

This suggests that when carbon-related sectors have the capacity to absorb potential layoffs

from closed power plants, anticipation effects are weak. High-educated men are the only de-

mographic experiencing positive changes in weak anticipation, while other groups show no

substantial change.

Table 21: Capacities Greater Than 1000 MW

Unemployment Log(Hours Worked) Carbon Emp.

(1) (2) (1) (2) (1) (2)

Low-Educated Female

Anticipation -0.0024 (0.0043) 0.0018 (0.0043) -0.0026 (0.0047) 0.0003 (0.0047) -0.0110∗∗ (0.0047) -0.0061 (0.0041

Observations 286,114 242,720 266,165

High-Educated Female

Anticipation 0.0013 (0.0052) 0.0037 (0.0064) -0.0012 (0.0055) -0.0066 (0.0091) 0.0022 (0.0063) 0.0107 (0.0078)

Observations 111,681 102,148 108,570

Low-Educated Male

Anticipation -0.0028 (0.0046) -0.0003 (0.0043) -0.0014 (0.0032) -0.0019 (0.0039) 0.0011 (0.0135) -0.0055 (0.0109)

Observations 337,992 281,275 312,398

High-Educated Male

Anticipation -0.0049 (0.0031) -0.0067∗∗ (0.0025) 0.0072∗ (0.0035) 0.0118∗∗∗ (0.0020) 0.0065 (0.0121) 0.0039 (0.0143)

Observations 98,736 87,051 95,946

State-Year FE Yes Yes Yes Yes Yes Yes

PUMA FE No Yes No Yes No Yes

Subset Capacities>1000 MW
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